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The random sequential adsorption ofk-mers on a two-dimensional lattice is studied in the regime of large
k, up to infinity where the coverage has a finite limit. A simple and accurate representation of the coverage as
a function of the time is given for any value ofk. Its parametrization is a consequence, through the master
equations, of the particular behavior that we find for the deposited clusters in Monte Carlo simulations of the
process. The parameters are fixed by matching a seventh-order time series expansion.
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Random sequential adsorption~RSA! is a model in which
objects are deposited on a given substrate one at a time, with
random positions, such that new objects cannot overlap pre-
viously adsorbed ones@1#. A variety of large molecules ad-
sorbs in an essentially irreversible manner, and the RSA
model may be appropriate@2# to describe this process. When
the substrate is one-dimensional, the model is generally solv-
able, as the well known deposition ofk-mers~line segments
of k sites! or its continuous version~the car parking problem!
@3#. In higher dimensions, no model has been solved, but a
great amount of information has been collected, especially
for the coverageQ(T): at low coverage, exact but finite
perturbative series can be derived~time or virial-like expan-
sions! @4#, and at large time the asymptotic approach to the
jamming limit can be guessed from heuristic arguments@5#.
In many cases, it then appears feasible to invent an interpo-
lating function for the coverage in agreement with the Monte
Carlo ~MC! data at any time@6#.

There is a noticeable exception to this scheme, when the
deposition involves very anisotropic objects, such as for ex-
ample, rectangles with a large aspect ratioa, where
a5~length!/~width!. In the RSA of such unoriented rect-
angles on the plane, whena>4, no satisfactory interpolation
has been found@7# between the low coverage regime, known
from a third-order virial-like expansion, and the asymptotic
regime where saturation occurs asT21/3. This failure is at-
tributed to the very different nature of the two regimes. In
fact, intuitive arguments and MC simulations@8# indicate
that at low coverage the orientations of the adsorbed rect-
angles are weakly correlated but that at long time an ordering
effect occurs: the adsorbed rectangles have orientations simi-
lar to those of their preadsorbed neighbors. This regime be-
comes more pronounced as the aspect ratio increases, and
some shrinkage of the low coverage regime weakens the
ability of the low time expansion at moderate order to fix the
scale of the coverage at large time.

The model we consider in this work suffersa priori this
kind of problem: it is the RSA ofk-mers on a two-
dimensional lattice for large values ofk, i.e., the RSA of
oriented rectangles of lengthk and width 1, when the aspect

ratio goes to infinity. Indeed, a standard Pade´ summation of
the seventh-order expansion ofQk(T) in powers of the time
T cannot be trusted at any time whenk is large: it appears
thatT has to be smaller than 1 whenk is greater than 10. It
is however possible to derive the jamming limitQk from this
expansion, as we have shown in our previous work@9#,
where we performed MC simulations of this model in the
range 2<k<512. In agreement with the MC simulations, we
have shown that

Qk50.66410.83/k20.7/k2, ~1!

which implies a finite coverage for infinitek-mers, that we
interpret as a consequence of the alignment constraint. In
order to complete our previous analysis, we want to report
here the very simple behavior that we find for the coverage
in the largek regime,k.10:

Qk~T!5TQk /~T1xk!, T>2/ln~k!, ~2!

where the constantxk , which can be estimated from the
series expansion, is given by

xk51.22211.07/k163.7/k2. ~3!

The representation~2! is an approximation whose accuracy
increases withk, according to our MC simulations, and
which appears as an approximate solution of the master
equations that we derive below.

Thek-mer deposition is done along two orthogonal lattice
orientations (i , j ) and letEn

i be a cluster ofn consecutive
empty sites aligned with the directioni . On an initially
empty lattice, the averaged probabilities of such sets are po-
sition and orientation free, and they can be denoted by
Pn(T), with Pn(T50)51. We use a dimensionless time
variableT5Rkt, whereR is the rate of random deposition
attempts ofk-mers per site and per unit timet, such that
2k(d/dT)Pn(T) counts all the possible ways of filling at
least one of then sites ofEn

i through ak-mer deposition.
Then2k(d/dT)P1(T)52kPk(T), which gives for the cov-
erage

Qk~T!52E
0

T

Pk~T8!dT85Qk22E
T

`
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Whenn>k, two kinds of events have to be considered: the
deposition occurs with orientationi and thek-mer is inside
or overlappingEn

i , or it occurs with another orientationj
and it intersectsEn

i at some sites. This last contribution can
be written as(sP(En

i Ek
j ), where thes summation is per-

formed on thenk possible intersections of a pair of orthogo-
nal clustersEn

i andEk
j . In order to truncate the hierarchy at

thePn(T) level, we put(sP(En
i Ek

j )5nkPn(T)w(T), where
thek-dependent conditional probabilityw(T) is left unspeci-
fied. This approximation will be justified later on, and we
end up with

2k
d

dT
Pn~T!5~n2k11!Pn~T!12(

l51

k21

Pn1 l~T!

1nkPn~T!w~T!, ~5!

which is solved as its one-dimensional analog. Inserting in
the system~5! the ansatzPn(T)5zn2k(T)Pk(T) for n>k,
one obtains

2k
d

dT
lnz~T!511kw~T!, ~6!

2k
d

dT
lnPk~T!5112(

l51

k21

zl~T!1k2w~T!. ~7!

Defining the functionx(T) asx(T)5k*0
Tw(T8)dT8 and tak-

ing into account the initial conditions, one arrives at

z~T!5exp$2@T1x~T!#/k% ~8!

and finally

Pk~T!5expS 2
T

k
2x~T!2S~x;T! D , ~9!

where we have definedS(x;T) as

S~x;T!5
2

kE0
T

(
l51

k21

zl~T8!dT85
2

kE0
Tz~T8!2zk~T8!

12z~T8!
dT8.

~10!

At this point we can mention the experimental tests of the
truncation hypothesis that we have made. In the course of
MC simulations of the model, for various choices ofk and
T, we have measured some ratioszn5Pn11(T)/Pn(T) for
n>k. As a consequence of this hypothesis, they must be
independent ofn, since they are all equal toz(T) given by
Eq. ~8!. The simulations indicate a small discrepancy be-
tweenzk andzk11 , increasing withT, but always less than
5%, the remaining measured ratioszk11 to zk15 being prac-
tically equal. They also show thatx(T) increases withT, in
agreement with its definition, and quickly saturates some fi-
nite limit xk . This behavior, which implies the rapid de-
crease ofw(T), indicates the tendancy to align for the de-
positedk-mers.

In the large k regime, where from ~8! z(T)
.12@T1x(T)#/k, S(x;T) becomes

S~x;T!52E
0

T12e2@x1x~x!#

x1x~x!
dx10S 1kD , ~11!

which can be writtenS(x;T)5Sk12 ln(T1xk) for T suffi-
ciently large and greater thanTk , under the assumption that
for T>Tk , x(T) saturates its limitxk , and whereSk is a
time-independent constant. Thus from Eq.~9!, Pk(T)
.Ak /(T1xk)

2, which inserted in Eq.~4! gives for the cov-
erage

Qk~T!5Qk22Ak /~T1xk!, T>Tk . ~12!

One can eliminate the constantAk in favor ofQk(Tk) in the
previous expression to obtain

Qk~T!5
TQk

T1xk
1
Tk1xk

T1xk
S Qk~Tk!2

Tkuk
Tk1xk

D , T>Tk .

~13!

Thus, if one can find Tk such that Qk(Tk)
5TkQk /(Tk1xk), then

Qk~T!5TQk /~T1xk! for T>Tk . ~14!

In order to test this assumption we have performed MC
simulations, within the method already explained in our pre-
vious work @9#, for k running from 12 to 128. In all cases,
taking forQk the values given in~1!, one can find a constant
xk such that the expression Eq.~14! fits perfectly with the
data forT>1. It is an interpolation of these values which is
given in expression Eq.~3!. It also appears thatTk , defined
as the smallest value ofT where the data and the fit Eq.~14!
coincide, shrinks to 0 approximatively asTk.2/ln(k), sug-
gesting a very simple form for the asymptotic coverage
Q`(T).0.664T/(T11.22). A sample of these results is dis-
played in Table I, whereT is restricted toT<1, as the data
and the fit coincide at higher values.

It remains to show that the values ofxk can be obtained
from the expansion ofQk(T) in powers ofT. In the large
k regime, the Pade´ resummation of this series is not reliable
at largeT, but it works in the regionT.Tk in such a way
that a comparison of these approximants and the form Eq.
~14! fixesQk andxk . A direct evaluation ofxk is also pos-
sible, and we give here as an example its determination in
the most difficult casek5`. In this case, up toO(1/k)
terms, the series ofx(T), obtained by matching the expan-
sion of Pk(T) @known from the series ofQk(T)# with the
parametrization~9!, reads in the variableu5kT

x~T!5u2
1

2
u21

5

27
u32

23

432
u41

481

36000
u52

24097

5832000
u6

1O~u7!. ~15!

As x` is the limit of Eq.~15! at u5`, we use the mapping
v5y(12e2u/y), which transforms the series~15! into a v
seriesx(v). Thenx` is the value ofx(v) at v5y. As this
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value must be independent of the mapping parametery, y is
fixed at finite order by a stationarity condition. One obtains

x~v5y!5
49

20
y2

203

90
y21

245

216
y32

805

2592
y41

3367

72000
y5

2
24097

5832000
y6 ~16!

and one can check that this polynom has only one extremum
for positive y at y52.13. It is a maximum with the value
1.218 and the Pade´ table givesx`51.2260.01, in agree-
ment with the interpolation given in Eq.~3!.

More generally, for any value ofk, xk(T) can be recov-
ered from its time series expansion, assuming that it has a
finite limit. This has to be contrasted with its usual self-

consistent determinations which, even if they work for small
k-mers, fail in the largek regime sincexk becomes un-
bounded and the coverage vanishes. For example in the
‘‘shielding’’ approximation@10#, wherew5zk21, one finds
Q25

8
9.0.8889~MC value @9# 50.9068! but ask increases

xk. ln(k) andQk.1/k. This is also the case for the mean-
field approximationw5Pk , which givesPk throughout the
nonlinear equation~5!, and it can be proven that the coverage
is bounded by 4 ln(k)/k. These approximations fail because
the probabilities of the empty clusters are independent of
their shape, which eliminates any ordering effect, but a real-
istic self-consistent determination ofx(T) at largek is still
an open problem.

The author is grateful to Dr. E. Pommiers for his help in
performing RSA simulations.
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TABLE I. For the values ofk given on top of each double column, the MC values of the coverage~first
column! are compared with the expression Eq.~2! ~second column!. The sign5 indicates that the data and
the fit are equal within one unit on the last digit, which is the maximum uncertainty on the MC results, which
are obtained as in our Ref.@9# where details can be found. For any choice ofk, the values forQk andxk used
to compute expression Eq.~2! are given by the interpolations Eq.~1! and Eq.~3!, respectively.

T k512 k548 k580 k5128 k5`

0.1 0.124 0.087 0.082 0.061 0.072 0.057 0.065 0.054 0.050
0.2 0.190 0.155 0.129 0.112 0.116 0.104 0.107 0.100 0.093
0.3 0.237 0.210 0.168 0.155 0.153 0.145 0.143 0.140 0.131
0.4 0.275 0.255 0.201 0.192 0.186 0.181 0.176 0.174 0.164
0.5 0.307 0.294 0.230 0.225 0.215 0.212 0.205 5 0.193
0.6 0.335 0.326 0.256 0.253 0.241 0.239 0.231 5 0.219
0.7 0.358 0.354 0.280 0.278 0.264 5 0.255 5 0.242
0.8 0.380 0.378 0.300 5 0.285 5 0.276 5 0.263
0.9 0.399 5 0.320 5 0.305 5 0.295 5 0.282
1.0 0.418 5 0.338 5 0.322 5 0.313 5 0.299
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